Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension.

نویسندگان

  • De-Pei Li
  • Hui-Lin Pan
چکیده

Increased sympathetic outflow contributes to the pathogenesis of hypertension. However, the mechanisms of increased sympathetic drive in hypertension remain unclear. We examined the tonic GABAergic inhibition in control of the excitability of paraventricular (PVN) presympathetic neurons in spontaneously hypertensive rats (SHR) and normotensive controls, including Sprague-Dawley (SD) and Wistar-Kyoto (WKY) rats. Whole cell patch-clamp recordings were performed on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla (RVLM) in brain slices. The basal firing rate of PVN neurons was significantly decreased in 13-wk-old SD and WKY rats but increased in 13-wk-old SHR, compared with their respective 6-wk-old controls. The GABA(A) antagonist bicuculline consistently increased the firing of PVN neurons in normotensive controls. Surprisingly, bicuculline either decreased the firing or had no effect in 59.3% of labeled cells in 13-wk-old SHR. In contrast, the GABA(B) antagonist CGP-55845 had no effect on the firing of PVN neurons in normotensive controls but significantly increased the firing of 75% of cells studied in 13-wk-old SHR. Furthermore, the evoked GABA(A) current decreased significantly in labeled PVN neurons of 13-wk-old SHR compared with that in normotensive controls. Both the frequency and amplitude of GABAergic spontaneously inhibitory postsynaptic currents were also reduced in 13-wk-old SHR. This study demonstrates an unexpected functional change in GABA(A) and GABA(B) receptors in regulation of the firing activity of PVN-RVLM neurons in SHR. This change in GABA(A) receptor function and GABAergic inputs to PVN output neurons may contribute to increased sympathetic outflow in hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced GABAergic inhibition of kidney-related PVN neurons in streptozotocin-treated type 1 diabetic mouse.

Activity of presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus is known to play an important role in the regulation of sympathetic outflow. Sympathetic overactivity is associated with many pathophysiological conditions such as diabetes mellitus and hypertension; however, the underlying synaptic mechanisms are poorly understood. In this study, we examined the GABAerg...

متن کامل

Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons.

The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording ...

متن کامل

The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal ...

متن کامل

Plasticity of pre- and postsynaptic GABAB receptor function in the paraventricular nucleus in spontaneously hypertensive rats.

GABA(B) receptor function is upregulated in the paraventricular nucleus (PVN) of the hypothalamus in spontaneously hypertensive rats (SHR), but it is unclear whether this upregulation occurs pre- or postsynaptically. We therefore determined pre- and postsynaptic GABA(B) receptor function in retrogradely labeled spinally projecting PVN neurons using whole cell patch-clamp recording in brain slic...

متن کامل

Opioid signalling in the rat rostral ventrolateral medulla.

1. The present article reviews several aspects of opioid signalling in the rostral ventrolateral medulla (RVLM) and their implications for the neural control of blood pressure. 2. In the RVLM, preproenkephalin (PPE) mRNA is expressed by bulbospinal cells that are strongly barosensitive. These putative presympathetic neurons includes C1 and non-C1 neurons. 3. In the RVLM, PPE mRNA is also presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 290 3  شماره 

صفحات  -

تاریخ انتشار 2006